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AN ANALYSIS OF HIGH-FREQUENCY AMBIENT NOISE 

by 

Lewis J. Lloyd and Maurice Daintith 

'-^^ "  • ' ABSTRACT 

Because of the high values of absorption and bottom-reflection losses, 
ambient noise in shallow water at frequencies above 30 kHz is considered to 

■   ,     result almost entirely from wind and rain activity at the local sea 
surface.  The ambient noise is thus effectively produced by a series of 
small radiators distributed over a plane surface, with the level and 
directionality of the sources being dependent on wind speed, rainfall, and 

. ;     frequency.  In order to assess the form of signal processing to use in a 
* p' high-frequency ambient-noise field, analytical  expressions have been 

_^- developed for the noise power in an omnidirectional hydrophone, for the 
horizontal and vertical spatial correlation functions, and for the noise 
power in an unshaded rectangular array. 

INTRODUCTION 

In the early studies of anisotropic noise fields the effects of absorption 
loss and bottom acoustic interactions were neglected <1,2>. Omission of 
the absorption loss implies that the analysis relates to low frequencies, 
in which case bottom interactions should be included. Recent studies by 
Kuperman and Ingenito <3> and Buckingham <4> apply to low frequencies, 
since bottom interactions are incorporated but the absorption loss is 
omitted. 

'* In the study of high-frequency ambient noise in shallow water at 
frequencies above 30 kHz the absorption loss should be included, since it 

■-■ ?^-; can be an appreciable part of the propagation loss; for example, the 
.: attenuation parameter a is equal to 13 dB/km at 50 kHz for a temperature of 

15.5°C. However, bottom-reflection losses are of the order of 15 dB and 
more per bounce for grazing angles between 10° to 90°, and propagation in 
the sea-bed is negligible, so that bottom interactions can be neglected. 

In consequence, a good representation of the high-frequency ambient-noise 
field in shallow water is given by assuming a number of small independent 

j  ^     noise radiators spread over the sea surface, with there being no coupling 
■" *'     back into the sea via the sea-bed.  The level and directionality of the 

;■.     noise radiators is assumed to be a function of the wind and rain activity 
on the local sea surface and of frequency. Because bottom interactions are 
neglected the propagation out to ranges of about three times the water 
depth is reasonably well defined by straight-line ray paths and a 
propagation loss given by 20 log r + ar. 
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This memorandum extends the analysis of Cron and Sherman <1> to incorporate 
an absorption loss and provides expressions for the noise power in an 
omnidirectional hydrophone, the noise level at the output of a conventional 
beamformer, and the spatial cross-correlation function. A comment is also 
made on the likely variation of noise level with frequency. These results 
are of use in assessing the performance of certain signal-processing 
techniques in high-frequency shallow-water ambient noise. 

1   BASIC CONSIDERATIONS 

The model generally used for low-frequency ambient noise based on 
theoretical considerations <1> and experimental data <2> is that the sea 
surface acts as a series of small independent noise sources radiating 
downwards into the sea. The level and radiation pattern of the sources are 
taken to be a function of wind speed, rainfall and frequency. Recent 
studies have incorporated acoustic interactions at the sea-bed <3,4>. 

The small radiators are assumed to be close to the surface and to have an 

amplitude radiation pattern following cos p, where p is the angle measured 
, from the vertical and m , the surface noise directionality parameter, 
corresponds to whether the sources are monopole, dipole, etc. With m equal 
to zero, radiation is omnidirectional and the sources are monopoles; 
with m equal to 1, they represent dipoles produced by specular reflection 
in the sea surface. The dipole radiation pattern of cosp is, however, 
strictly applicable only to sources close to the surface in terms of the 
wavelength, as shown in Fig. 1. 

At high frequencies (> 30 kHz), because acoustic bottom interactions are 
negligible, the propagation out to ranges of three times the water depth 
(p up to yo'*) is reasonably well defined by straight-line paths. In 
consequence the propagation loss is given by 20 log r + ar, where r is the 
slant range and a  the absorption coefficient. 

The use of a cos p amplitude radiation pattern at these frequencies may be 
questionable, since we are now dealing with small wavelengths (< 5 cm) and 
the formation of dipoles with a separation of much less than a wavelength 
is not possible. However, it is considered that some radiation pattern is 
applicable at moderate sea-states due to entrained air increasing the 
near-surface propagation loss. This radiation pattern may still be of the 

form cos p, since for a given depth of entrained air the path length 
through the layer increases as 1/cosp so that the noise amplitude below the 
layer may well vary as cosp, see Fig. 2. 

On the basis of the above, the geometry of the situation under 
consideration is given in Fig. 3, which shows a representative section of a 
small rectangular planar array located on the sea-bed with the water depth 
(z) being very much larger than the hydrophone spacing (s). The array is 
shown tilted by an angle y  to the horizontal along the q axis of the array. 
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Sea 
surface 

Image (TT phase change) 

Radiation pattern « cos3 if d « A 

FIG.   1     DIPOLE RADIATION  PATTERN 

Sea -* ^^Vl%?;^ °-^ 
surface -■-•''-"^ ■-"• 

Layer of 
entrained 
air bubbles 

<-  = d/cos3 = path length through bubbles 

Noise amplitude, in the far field of the source below 

the layer of bubbles <^ j ^^  cos3 

FIG.   2     RADIATION  THROUGH A  LAYER  OF BUBBLES 
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Sea 
surface    ^ 

Area = 
R d(() dR 

sing = 

cosg 

(z2+R2)^ 

(z^+R^)^ 

RdR = (z=+R2)tanBd3 

Array makes an angle y to the 
horizontal  in the q direction 

FIG.   3     GEOMETRY OF  THE MODEL 



■w 

SACLANTCEN SM-159 

2   NOISE LEVEL IN AN OMNIDIRECTIONAL HYDROPHONE 

From Fig. 3 we have that the slant range r  from a small elemental area of 

the sea surface to the hydrophone in the pth row and the qth column of the 

array is given as follows: , 

where 
pq 

= (z - qs-sinY)2 + R^ , pq 

R2 = 1^2 + p2s2 + q2s2.cosY " 2R(p2s2 + q2s2.cosY)^ cos((t)+a). 

Combining the above equations and using (1+x)^ = l+x/2 if x «1 we have 

r  = (z2+R2) 
pq 

1 + 

p2s2+q^s2  zqs-siny 

2(Z2+R2)   (Z2+R2) 

Rs 
(p-coscf) - q*cosY*sin(t)) 

(z2+R2) 
(Eq. 1) 

Thus we can obtain 

r      j^T  "  r 
p,q+l        pq 

(l+2q)s2        zs-sinv        Rs-cosysintt) 
 +  ^ 
2(Z2+R2)^ (Z2+R2)2 (Z2+R2) 

Since s2«z  , the first term can be dropped, giving: 

r        T  -  r      = S'CosvsinB'sind) -  S'sinv'CosB . p,q+l        pq j M        T i        V (Eq. la)  / 

In a similar manner we can obtain 

r ^,  - r  = -S'sinB'COSd). 
p+l,q   pq 

(Eq. lb) 

In the following it is assumed that the slant range (r) and the angle (p), 
as measured to the centre of the array, can be used to compute the noise 
amplitude at each hydrophone in the array. However, for noise phase the 
spacing of the hydrophones is taken into account. 

At frequency f for the pq'th hydrophone, the noise signal amplitude in 
a 1 Hz band due to a unit area on the surface is given by: 

fpq 

n*cos B  .     •/ 4. ] \  [_ -Ar   -j(iut-l<r) 
(Eq. 2) 
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where n-cos 3 = noise signal radiated per unit area of the surface 
in a 1 Hz band, 

A     = absorption coefficient for signal amplitude expressed 
in exponential form, 

k     = wavenumber = r-^ . 

Then the noise power from the total surface is given by: 

%^^^\{i      "fpq • "fpq •^d'^dRJ.   _ (Eq. 2a) 

where E{ } denotes the expected value and the asterisk (*) indicates the 
complex conjugate. This gives, via Eq. 2 and Fig. 3, 

W     -  n^H J cos^'^p-tanp.e-^^'^^^P dp. (Eq. 2b) 
^^      0 

where A = a/4.343, a  being the absorption coefficient in dB/m. 

Equation 2b can be readily integrated by using the substitution cosp = 1/t, 
giving: 

"^pq =  "^" ^2m+l('^^> ' (Eq- 2c) 

where Ej^ stands for the exponential integral of order k. 

If the absorption loss is omitted, the exponential term in Eq. 2b would not 
be present and: 

N|pq (no absorption loss) = ~p . (Eq. 2d) 

This suggests that at low frequencies, with no bottom interactions, the 
noise level in an omnidirectional hydrophone (Eq. 2d) is independent of the 
depth of the hydrophone. In our high-frequency case (Eq. 2c), the noise 
power is a function of__depth and of absorption coefficient. Thus the 
high-frequency value of N^  has two components that vary with frequency: 

the value of n^, which for a given sea condition decreases with increasing 
frequency, and the exponential integral £2^+^^^^^' ^^^"^"^ decreases with 

increasing frequency due to the increase in A. 

Figure 4 plots values of E2m+1^'^^^ ^" decibels with respect to the level at 

10 kHz for three typical shallow-water depths of 150, 300 and 450 m for 
frequencies from 10 to 100 kHz. The graphs are for values of m = 0 and 
m = 3, the extreme values. The value of m = 0 is likely to apply at low 
frequencies and for only small activity on the sea surface, that of m = 3 
for high surface activity and high frequencies.  Superimposed on these 
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m=0 
©z = 150 m 
A z = 300 m 

Hz  = 450 m 

S       30 

 I 

a: 

50      60 

FREQUENCY    (kHz) 

FIG.   4     VARIATION OF E^      ,(AZ)   WITH  FREQUENCY 



graphs is a line showing the generally accepted slope for high-frequency 
ambient noise obtained by linear extrapolation from lower frequencies. It 
is seen that the E„ +T(AZ) curves show a greater fall-off above 40 kHz than 

given by the linear extrapolation, particularly for low sea-state (m = 0) 
and the greater water depth (> 300 m). Because Eqs. 2c and 2d represent 
spectrum levels, the total noise power in a band form fj to f2 is obtained 
by integrating over the band: 

^Wpq = i ^ ^ hn..!^''^''  ' r 

where band W = fa'^x- 

3   SPATIAL CORRELATION FUNCTION 

For a single frequency (f) in our band of interest, the normalized spatial 
correlation function is given by: 

E{n(f,Xi,y,z)-n*(f,X2,y,z)} 
p(x,f) -  rr-  ,      -    (Eq. 3) 

{E[n2(f,Xi,y,z)]E{n2(f,x2,y,z)]}% 

where E{ } refers to the expected value of the expression, n(f,x,y,z) 
represents the noise signal at frequency f and position (x,y,z), and it is 
assumed that the noise signals have zero mean values. 

In terms of our geometry and model, and following the form of Eqs. 2 and 
2a, Eq. 3 can be written as: 

1   7T/2 2n j 
P(s,f) =~  S    J En   -n:^     R d<^  dp, (Eq. 3a) 

fpq        ^ J 

where Nf  has been taken equal to Nf  ^, on the basis of our earlier 
fpq ^      fp,q+l 

assumptions. 

Thus the spatial correlation function for the noise from the total surface, 
following the form of Eqs. 2b and 2c, is given by: 

1   (n/2 2n  n^ cos^'"p -Ar   jk(r  ^^-r )      ) 
P(s,f) =2=- E J J   e  . e   P'"'"'^ PI R dd) dp , 

NL„ ' 0 0   2r2 ) 
^P"" (Eq. 3b) 
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which leads to 

p(s,f^ = _lEa_   j   cos^"'"-'-p-sinp-e"'^^'^^^^   J   cos(ks-cosY-sinp-s1n(t) 
2N2 0 0 

^P^ ' - ks-sinycosp) dc]) dp. 

In the integral  over ^ the integral  of sinCks-cosY'sinP'sintJ))  is zero;  thus 
we have: . _ 

p(s,f) -      S    cos"'"     p-sinp e ^ cosCks-cosp-siny) 

'^'" -^ '        -J  (ks-cosysinp) dp. 
° (Eq.   3c) 

A solution to this integral is given in Appendix A.  For a horizontal 
separation (y = 0), the following expression obtains: 

1    » (^ks)*" 

where k = wavenumber and s -  hydrophone spacing. 

For a vertical separation (y = 90°) we have: 

p(z,f) =  i  I (ijsfs^ E      (Az). (Eq. 3e) 
E2^^-L(AZ) i=0  (2i)!   ^""^^^^^ 

The corresponding equations by Cron and Sherman <1> for the case when 
absorption loss is neglected are 

2V J (ks) 
P'(X) =  1  , (Eq. 3f) 

(ks)"" 

1  ?m 1 
p'(z) = 2m ; X"^""  cos(ksX) dX. (Eq. 3g) 

As can be seen from Appendix A, it is not easy to show directly that when A 
is set equal to zero Eqs. 3d and 3e are the same as Eqs. 3f and 3g 
respectively. However, it can be shown indirectly by comparing the 
numerical values obtained from the two pairs of equations. 

This comparison is done for different values of m in Fig. 5 for p(x) and in 
Fig. 6 for p(z), where the solid line represents the values from the 
present analysis with a very small value of A (A is set equal to 0.0001, 
which represents 0.43 dB/km), and the dashed lines represent the values 
from Cron and Sherman <1>. 
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HORIZONTAL CROSS-CORRELATION FUNCTION 
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It is seen that good agreement exists with p'(x) for all values of m, and 
also with p'(z) except for the case of tn equal to zero. In this instance, 
it is seen that the Cron & Sherman expression gives a value of 1 for p(z), 
independent of the normalized element spacing s/X, whereas when an 
absorption loss is included the present analysis gives a reducing value of 
p(z) as s/X is increased. As will be seen in the next figures, the value 
of p(z) becomes oscillatory about zero for m equal to zero when the 
absorption loss is greater than a value corresponding to 20 kHz and for 
water depths greater than 150 m. 

Value of p(x) and p(z) are plotted in Figs. 7a, 7b, 7c and 7d and in 
Figs. 8a, 8b, 8c and 8d respectively. The graphs are for the three sample 
depths of 150, 300 and 450 m, frequencies of 20, 50 and 100 kHz, 
and m equal to 0, 1, 2 and 3. 

The effects of the three variables of m, frequency, and water depth shown 
by Figs. 7 and 8 are plausible and consistent with the previous deep-water 
low-frequency analyses <1,2,3>. The values of s/A at which p(x) and p(z) 
have their first zeros are, for m equal to 1, a water depth of 450 m, and a 
frequency of 20 kHz, 0.6 and 0.3 respectively; the values at low frequency 
<1,2,3> are 0.6 and 0.35, see Figs. 5 and 6. The effect on p(z) and p(z) 
of increasing m, that is of making the field more directional, is also 
consistent with the low-frequency values. Increasing the water depth will 
increase the propagation loss from the surface along a given angle of 
incidence at the sea bed, which will make the field more directional and 
thus have a similar effect to increasing m. A similar argument applies to 
an increase in frequency (increases in absorption coefficient). In 
summary, therefore, the curve for p(x) is effectively stretched out by an 
increase in m, water depth, or frequency, whereas the opposite applies to 
p(z). 

4   NOISE LEVEL IN A BEAM 

The analysis given above can be extended to give the noise power in a beam 
produced by a conventional beamformer, that is, a beam formed by summing 
the phase-shifted, but unweighted, hydrophone outputs. 

The array, with dimensions small compared with the water depth, is assumed 
to be tilted at an angle v to the horizontal in the q direction, and the 
steering is taken to be along the q axis only, so that the beam is steered 
in the same plane as the array is tilted. The beamforming can thus be 
represented either by summing along the q axis after the appropriate delays 
and then summing across p, or by summing across p without steer delays and 
then summing along q with the appropriate delays. The first sequence will 
be used in the following. 

Let the steer angle measured from the vertical be 6, then the phase shifts 
required along the q axis are qk*sine, where q varies from -(Q-l)/2 to 
+(Q-l)/2 or from 0 to Q-1. 

For the wavefront of the noise from a small elemental area of the sea 
surface a reference time is taken at one end of the array (the 'zero' end 

n 
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HORIZONTAL   CROSS-CORRELATION  FUNCTION 
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s/X 

FIG.   7b     HORIZONTAL CROSS-CORRELATION FUNCTION   (M =  1) 
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HORIZONTAL   CROSS-CORRELATION  FUNCTION 

rl M = 2 

EN s. 
^ 
\ A2 

^ 
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\ 
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/ 
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^ 

*v^ 
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E 
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/ -1 s/X 
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2 
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E 
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E 
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/ 
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~ts» 
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.00       .25       .50       .76     1.00     t.2S     t.SO     1.76     2.00     2.25     2.50     2.75     3.00 

s/X 

FIG.   7c     HORIZONTAL CROSS-CORRELATION FUNCTION   (M =   2) 
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HORIZONTAL   CROSS-CORRELATION  FUNCTION 

rl M=3 
EN 

N, 2 / 
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E 1 h^ E 
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E 
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.00       .Z6       .50       .76     1.00     1.Z6     1.60     1.76    Z.OO     Z.ZS     Z.SO     Z.7S     3.00 

s/X 

FIG.   7d     HORIZONTAL CROSS-CORRELATION FUNCTION   (M  = 3) 
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VERTICAL CROSS-CORRELATION FUNCTION 

H M = 0 

SACLANTCEN SM-159 
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2=300m 
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.00       .25       .50       .75     1.00     1.25     1.50     1.76    2.00    2.25    2.50    2.75    3.00 

s/X 

FIG.   8a     VERTICAL  CROSS-CORRELATION FUNCTION   (M  = O) 
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VERTICAL  CROSS-CORRELATION   FUNCTION 

M=1 
|N^ /I 

EV 
zz 

\ —^ 

\ \ r N 
\ 2 Y \ V y ^ 

— \ / / 
— W r 

+111 nil III! nil nil III! III! nil nil nil III! nil 

WATER DEPTH 
1 = 150m 
2=300m 
3=450m 

20 kHz 

.00       .ZS       .50       .75     1.00     l.ZS     1.50     1.75     2.00     2.25    2.50     2.75     3.00 

s/X 
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I^ ^1 

— Y /-^ 
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- 2 
/ / 

^ ) 

~ 0 
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.00       .25       .50       .75     1.00     1.25     1.60     1.75    2.00     2.26    2.50     2.76     3.00 

s/X 

FIG.   8b     VERTICAL CROSS-CORRELATION FUNCTION   (M =  1) 
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VERTICAL CROSS-CORRELATION FUNCTION 

M = 2 
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- / \ / 
/ 
\ 

— 
/ 

\ 
V / \. / 
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SACLANTCEN SM-159 

WATER DEPTH 
1=150m 
2= 300m 
3= 450m 

20 kHz 
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\ .^ \ 
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^ 
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.00       .25       -SO       .75     t.OO     1.25     1.50     1.75     2.00     2.25     2.50     2.75     3.00 
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FIG.   8c     VERTICAL  CROSS-CORRELATION  FUNCTION   (M  = 2) 
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VERTICAL   CROSS-CORRELATION   FUNCTION 

M = 3 

^ 
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FIG.   8d     VERTICAL CROSS-CORRELATION FUNCTION   (M =   3) 
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in the above summation). Thus the incremental delays of the wavefront 
along the q axis can be obtained from the increment in the slant range 
(r ) along the q axis, i.e. by r _^-,  ~ r    ■ 
pq   ^  ^        p,q+i  pq 

The noise amplitude along the q axis in the pth column due to a small 
elemental area of the surface is then: 

"•^°='"P  -iu.t^"^ -jqk-sine -jq(r  +-L-r ) "AR 
N (8) =   e J*^^ I e        e    P,q -L pq ^   ^ 

^       r q=0 

with the value of p, and that of r associated with noise amplitude, taken 
as independent of p or q since the array dimensions are small compared with 
the water depth. 

The sum of N (6) across the p axis can similarly be obtained by taking 

increments of r ,,  - r . From Eqs. la and lb, we have 
p+l,q  pq 

and 

r  +-| ~ r  = s(cosY*sinp*sin(t) - sinycosp) 

r .,  - r -  -S'sinB'Cosd). p+l,q   pq       H   f 

Then the total noise amplitude across the full array is given by: 

N (6) = ^I^ g-jpks-sinp.cos(t. ^ ^g^ ^^^ ^^ 

P*^     p=0 ^ 

That is: 

P-1  . 
N (9) = n cos'^p ^ ■J'^^"'^'' I g-jpks-sinp.cos(t. 

P^ ■       p-0 

^j  -jks(sinp-cosysin(t)-sinycosp) -jks-sin0     (Eq. 4a) 

q=0 

= n cos'"p-^ -J"^^-^^ ^~1^  e-JP^ %^  e-J^y . (Eq. 4b) 
"^       p=0     q=0 

where 
x = kS'sinp'Cos(}) 

and 
y = ks(sinp« cosy sine}) - sinycosp + sine). 
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Since 

I    e JP"" = e    ^  —    , (Eq.   4c) 
p=0 sin p 

I    e ^^-^ = e  - 
q=0 sin ^ 
1    e J'^y = e    ^  —- (Eq.   4d) 

Thus we have: 

N    (e) =n'COS B - e     pq "^ r •    X .    y 
sin 2 sin ^ 

The total   noise power in the beam is then given by: 

00   27T - ^ 

N^(e) = E    J J    N    (e)-N*  (e)R dcj. dR 
0   0        '^'^ '^'^ 

7t/2   27t „       , A R 
= n^ P2Q2    J    J    cos'^"'"-^p sinp-e^ '^^  [f(P)-F(Q)]2 dcf) dp   , 

0      0 
(Eq.   4e) 

where f(P) = sin(i§Pks-sinP'Cos(|)) 
Psin(%kS'Sinp-cos(j)) 

.      p,^.  _ 5in[%Qks(sinp'Cosvsin(|) -  sinycosp + sine)] 
^        Q«sin[%ks(sinp'COSY-sin(|) -  sin^-cosp + sine)] 

Equation 4e is evaluated in Appendix B to give 

00      00    p-i Q-i 

M^rfl^ - 2mi2    I      I      I      I    A B. (-)i   (A/2)n Jn(A) 
^ ^»)      p^ i=o n=0 r=0 t=0    ^ ^ n! 

^^^,  „2i    , ,,_,      ., 2i+l 
cosr 'j^f-    W2n+2i^l^^"> ^ ^|^P;q^, E2^+2n+2i+2('^^>' 

where 
A„ = P B^ == Q 

0 0       ^ 

A, = 2(P-r)    (r > 0) B.  = 2(Q-t)    (t > 0) 

A.    = ks V r^+t^cos^Y P - kst-sine q = kst-siny 
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This is a fairly complex expression and, of course, applies only to an 
unshaded array. A closed-form solution for a shaded array would be 
achievable if the shading functions allow summations to be made, as in 
Eqs. 4c and 4d. If the shading function is known, then the total power in 
a beam is probably best evaluated using numerical integration. 

For a horizontal array, in which ^ = 0, Eq. 4f becomes 

27in^     00    p-i    Q-i (Ai/2)" 
N^(e). =        111    A B cosP      J  (\i)  E (Az). 

"  p2Q2 n=0 r=0 t=0 ^ ^ n!     "    2m+2n+l 
»     (Eq. 4g) 

where Ai = ksV r^+t^ , 

p = kst'sine . 

In the case of a vertical array, in which Y = n/2, the quadruple summation 
remains as in Eq. 4f, but now 

A.2 = ksr     q = kst 

(^2/2)" 
and there are only P terms of the form   J (A.2)' 

CONCLUSIONS AND RECOMMENDATIONS 

If the model of high-frequency ambient noise in shallow water proposed and 
examined in this study is reasonable, then: 

a. Care should be taken in using noise levels obtained by linear 
extrapolation from the lower frequencies. The study suggests that the 
noise power in an omnidirectional hydrophone (Eq. 2c and Fig. 3) falls off 
more rapidly with frequency above 40 kHz, particularly for low sea states 
(m equal to zero) and for greater water depth (z = 150 m), than is 
predicted by linear extrapolation from the lower frequencies. 

b. When designing an array for use near the sea bed at frequencies 
above 20 kHz, the value of hydrophone separation for the first zero in p(x) 
or p(z) may be a function of sea state, frequency, and water depth. From 
the results in Figs. 7 and 8 it would appear necessary to space the 
elements by more than A/2 for horizontal arrays and less than A/2 for 
vertical arrays, depending on the value of m that is applicable, the 
frequency in use, and the water depth. For example, for m equal to 1, a 
frequency of 50 kHz, and a water depth of 300 m, the optimum spacing for a 
horizontal array is 0.75A and a vertical array 0.3A. 

c. The expression for the total ambient noise power in an unshaded 
array is complex (see Eqs. 4f, 4g and 4h). For a shaded array, it is 
possible to obtain a closed-form solution only for those shading functions 
that allow the summations in Eqs. 4c and 4d. For other shading functions, 
however, a solution could be obtained using numerical integration. 
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Experimental data are required to verify the model and the resulting 
analysis. Measurements are proposed as follows: 

1) Noise Levels 

The noise level in an omnidirectional hydrophone placed on or near the 
sea-bed should be measured as a function of sea-state (wind speed), 
frequency, and water depth for comparison with Eq. 2c and Fig. 3 and to 
give estimates of the value of n^. 

2) Noise Directionality 

Measurements should be made of the high-frequency noise level in shallow 
water using a high-resolution array (narrow mainlobe and low sidelobe 
levels). The array should be situated on or near the sea-bed and capable 
of being tilted to various angles away from the vertical. Preferably, for 
a given sea-state, simultaneous measurements should be made at two 
different depression angles e.g. one array at zero depression (looking 
vertical), the other at 30° depression. A sampling technique could be 
developed to measure the noise levels for a given sea-state over the whole 
vertical arc; for example, with two arrays, sample vertically and at 30 
depression for 5 minutes, then at 10° and 40° for 5 minutes, then at 20° 
and 50°, etc. 

o 

3) Spatial Correlation 

It is recommended that consideration be given to the construction of a 
device to measure p(x) and p(z) over the frequency range of 30 to 100 kHz. 
This would require the use of very small ball hydrophones, say 0.2 cm 
diameter, spaced on horizontal and vertical axes in such a manner as to 
provide adequate samples of p(x) and p(z) out to values of s/X = 2. This 
could be done with 24 hydrophones (12 on each axis) with a separation of 
0.5 cm (0.167\). 

4) Noise Power in a Beam 

It is recommended that the outputs of the small hydrophones outlined above 
be summed to form simple, unsteered beams, with or without shading, to 
provide experimental results for comparison with Eqs. 4g and 4h. The 
elements could be tilted to evaluate the effect of Y, the tilt angle. 
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APPENDIX A 

EVALUATION OF THE BESSEL TRIGONOMETRIC INTEGRAL FOR THE 
SPATIAL CROSS-CORRELATION FUNCTION 

In Eq. 3c of the main text, the spatial cross-correlation function includes 
the integral 

n/1        2m-1 
Ii = J cos   p*sinp'exp(-Az secp)cos(ks*cosP'SinY)J (ks-cosysinp) dp, 

° (Eq. A.l) 

where m is a positive integer, and Az is a positive constant. 

As this integral does not seem to have been evaluated before (since it does 
not appear in collections of integrals such as <A.1>, the development of a 
form suitable for numerical calculations is presented here. For the sake 
of completeness, the result is given for y arbitrary, although from a 
practical point of view most interest centres on the limiting cases 
of V = 0 and -y = n/2. 

An interesting outcome of this analysis is the discovery of two identities, 
which may be of use elsewhere. 

A.l Evaluation of the Integral 

Expanding cos(ks-cosP'sinv) and J (ks-cosysinp) as infinite power series 
in cosp and sinp respectively, 

*  "^ "^^   2m-l (-k2s2sin2Y-cos2p)^ 
Ij = I  I J cos   p-sinp-exp(-Az-secB)  j^rr^.  

i=0 j=0 o ^21)! 

(-k^s^cos^Vsin^p/4)'^ dp . 
j!j! 

The term (sin^p)"^ has a binomial expansion in cos^p, i.e. (l-cos^p)-^. 
Doing this, and collecting like terms together 

I - I  I  i "f (-)^'^'^'-'(k^s^)^'"^'sin^\(cosy/2)^J.cosp^"^^^^'^^J-^^-^ 
^"i=0 At=0 0 (2i)!j!t!(j-t)! 

sinp exp(-Az-secp) dp . ,      (Eq. A.2) 
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H/2  ^ 
But in J cos p-sinp-exp(-Az-secp) dp, putting sec = t this integral 

0 
becomes ; 

T exp(-Azt) .' 
i  .N+2   °^ 

= the exponential integral E^^^if\z). '  (Eq. A.3) 

Applying this to Eq. A.2, gives 

I, = I Z i (-)i-^k^s^)^--Jsin^\(cosy/2)^JE^^^^.^^..^^^^(Az) 

i=0 j=0 t=0 (2i)!j!t!(j-t)! 

Write t = j-n and sum over j and n. Since t > 0 and j > n, 

,    -    ;    ;    :     ^-)''"'(^'^')''' ^^■"'^("=V/2)2J" E2^,2i.2n.l(^^) 
'  i=0n=0j=n (2i)!j!a-n)!n! ' 

(The change in order of summation is justified since it is easily seen that 
the triple summation is absolutely convergent.) 

Now put j = n + r 

^ _ »  .  . (-)^--(k^s3)i-- sin2%Ccos./2)^-^^ W2i.2n.l('^^) 

'  i=0 n=0 r=0 (2i)!n!r!(n+r)! 

But 

00 (-zV4)' 
J^Cz) = (z/2)" I   

r=0 r! (n+r)! 

and so the expression becomes, on summing over r. 

CO     00      (-k^s^Y'sin^Y)^   (ks-cosY/2)" 

(Eq.   A.4) 

I, =   I      I      ^^,       -^-^—    JpCks-cosY)  E2m+2i+2nn^^^) 
i=0 n=0 ^'^^^' "' 

Equation A.4 is the required closed form. As written, it is a 
Fourier-Bessel expansion 

Ii = I A J (ks-cosY) 
n=0 " " 
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in which 
(ks-cosY/2)" «> (-k^s^-sin^Y)' 

'^n "    n!    .JQ   (2TV. ^Zm+Zi+Zn+l^'^^^ ' 

For computing, however, it may be better to expand in a series of 
exponential integrals. Writing i + n = p in Eq. A.4, I^ becomes 

^^/pE2..2p.l('^^). 

where ^ 
P   (-k2s2.sin2Y)P "   (ks-cosY/2r 

% =  ^i^ (2p-2n)! —i!    V^-"^^) 

The coefficient B contains only a finite number of terms, which may be an 
advantage.      ^ 

This general form will not be examined in further detail; as stated in the 
main text, the significant cases are those for which y = 0 and y = n/2. 
Each of these leads to a significant simplification in the expression for 

Ai2   Significant Cases 

A.2.1 Horizontal Array (y =0) 

In this case, from Eq. A.4, in the summation over i the only non-zero term 
is that for which i = 0, giving 

Ix(. = 0) = 1 i^  J^(ks) E^^^^^^^if^z). (Eq. A.5) 
n=0 

This is evidently a convergent series, since for n > 0 the moduli of both 
the Bessel function and the exponential integral are less than unity, so 
........ ^      .  .    .       1   4.U  (ks/2)n  i.e. less that the moduli of successive terms in n are less than ^^ —^— 
than the corresponding terms of the absolutely convergent series for 
exp(ks/2). 

Numerical Computation 

The following remarks will be superfluous to those who are practiced in 
numerical techniques, but may be useful to those who are not specialists, 
and who (as has happened so often to the author) can easily produce invalid 
answers. 

In summing a convergent series of the form u +Ui+y2+-•-^u ... it is 

customary to select a desired accuracy e (e.g. e = 10 for accuracy to the 
third decimal place), and to terminate the series when |u |< e.  This 

27 



SACLANTCEN SM-159 

assumes, however (among other things) that lu I decreases monotonically 

with n. This condition is not necessarily true for the series of Eq. A.5. 

First, J (ks) is an oscillatory term; i.e. , it passes through zero. 

If, for example, ks happened to be equal to, or close to, a value 
corresponding to a zero of J (ks), the naive application of the 
rule |u |< s would stop the series at n = 1, irrespective of the error. 

Secondly, the criterion ju |< e is, in any case, only fully justified if 

the series consists of terms alternatively positive and negative.  (For 
00   1 

example, the series 1 - diverges to infinity, and stopping at n = 100 

does not give an answer correct to two decimal places.) 

These difficulties may be overcome by finding an upper bound to the residue 
obtained by terminating the summation at the n'th term. 

Since, for the purpose in the main text, the required quantity is 
normalized by dividing by the value of I^ for ks = 0, viz E„ ,(Az), we 
have 2m+l' 

■1 - 

n=0 

where 

Hence the modulus of the residue R on stopping at the nth term is 

R = 
00 

I 
r=n+l 

u 
00 

I 
r=n+l 

Now 

and 

J^(ks)  < 1  for n > 0 

^2m+2n+l^^^^ < 1   for n > 0. 

E2m.l(^^> 

Hence 

lu I < iKsZfl 
r      n! 
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and 
|R|< (ks/2)""^  , (ks/2)""^  , 
\^\ ^       (n+D!        (n+2)! 

(ks/2) n+1 

(n+D! 

r   (ks /2)    (ks/2)2 
n+2    (n+3)(n+2) 

(ks/2) 

^  (n+D! 

n+1 (ks/2)   (ks/2)' 
1 + n+2 (n+2)' 

(ks/2) n+1 

(n+D! (ks/2) 
(n+2) 

A sufficient condition for terminating the summation is thus 

.n+1 (ks/2)' 

(n+D! 1 - (ks/2) n+2 

< £ . (Eq. A.6) 

This does not give unmanageable quantities. For example, if ks = 6, n = 12 
_3 _5 

gives an error < 0.3 x 10  and n = 13, an error < 7 x lo . 

Two identities 

If Az = 0 in Eq. A.5 

II(Y = 0, AZ = 0) = 

(since E (0) = -^ . [i^ M-l ). 

«> (ks/2)  Jn(ks) 
I 
n=0 n!    2(m+n) 

Putting y = Az = 0 in the original equation (Eq. A.l) gives 

7t/2       y , 
Ii(v = 0, Az = 0) = 2 J cos •^p«sinp'J^(ks-sinp) dp. 

0 
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But this is a known integral (see <A2> for example), which integrates to 

II(Y = 0, AZ = 0) = 2"'"^(ni-l)! J^(ks)(ks)"'" 

and so we have the identity 

'' ' (ks/Z)"^  <» (ks/2)"j (ks) 
J (ks) - -7—YTT      ^    —7 ^-^,  (Eq. A.7) m^  ^   (m-1)!   „  (m-n)-n! ^   ^ ' n=0      ^ 

which, oddly enough, expresses J (ks) as a Fourier-Bessel series. 

From Eq. A. 7 an algebraic identity can be deduced.  Expanding the Bessel 
functions as power series in ks 

CO  (-k2s2/4)lf^   (ks/Z)"" 00  00  (ks/2)^"   (-k2s2/4)^ 

m 
^^0  r!(m+r)!    (m-1)! ^^Q t=0 ("""^"^'n'   t! (n+t)! 

«> (-)'^(k2s2/4)'"      ^   00  00 (-)t(k2s2/4)n+t 

r= ^^Q   r!(m+r)!      (m-1)!  ^^Q t=0 ^"""""^'"'^'^"■'^^' 

writing n + t = r, the second term becomes 

«>  r  (-)'"""(k2s2/4)'^ 
1    I  I (m-D! ^^Q ^^Q (m+n)-!r!(r-n)! 

Equating terms in (k^s^/A) . 

1     ^  M" 
(m+r)!r!    (m-1)!  ^^Q (m+n)n! r! (r-n)! 

01* 

1  ^ ^     (-)" 
m(m+l)(m+2)...(m+r)    ^^    (m+n)r! (r-n)!  ' ^^^- ^'^^ 

a relationship which is surprisingly difficult to establish by purely 
algebraic methods. 

A.2.2 Vertical Array (y = n/2) 

A similar simplification is introduced by setting y = n/Z. In this case, 
in Eq. A.4, the only non-zero term in the summation over n is that for 
which n = 0, yielding 

II(Y = 71/2) = I ^""^^^^^  W2i+1^^^^ . (Eq. A.9) 
i=0  (2i)! 
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This is an even simpler form than for the horizontal array.   The factors 

(2i)! 
are the terms in the expansion of cos(ks). 

The computation is similarly somewhat simpler. As for the horizontal array 
there is a terminal condition that 

f,   .2i+2  f.   J\ (ks)   ^ (ks) 
(2i+2)!    (2i)! 

or 
(2i+2)(2i+l) > k^s^ , 

which is certainly the case if 

(2i+l) > ks 

or 

i > (ks-l)/2. 

Moreover, since terms alternate in sign, a sufficient condition for an 
error not exceeding e is 

U^j_j   . ^m^^+l  ^^ (Eq. A.IO) 
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APPENDIX B 

EVALUATION OF THE INTEGRAL GIVING THE AMBIENT NOISE POWER 
IN THE OUTPUT OF A CONVENTIONAL BEAMFORMER 

In the main text Eq. 4c includes the following double integral: 

n/2 2n 

^2 " -^  J" cos^'""-^p-sinp-exp(-Az-secp) [f(P)F(Q)]2 dcj) dp , 
°  ° (Eq. B.l) 

where m is a non-negative integer, 

Az is a positive constant, 

f.px - sin(Px/2)     Frn^ - 5MSyZ2) 
^^^''  P sin(x/2) '    ^^^^      Q sin(y/2) ' 

with  x = ks'sinp'cosfj) , 

y = ks(sinp*cosY*sin(t) - sinycosp + sine). 

The first stage is the integration with regard to (]), which involves only 
the factor in squared brackets. To start with we find an expression for 
f2(P) in terms of the weighted sum of a number of terms of the form 
cos(rx). To show that this is possible, consider the trigonometric 
identify: 

sin(Px/2) - sin(P-2-x/2) = 2cos(P-l-x/2)-sin(x/2) 

and therefore 

sin(P-2)-x/2) - sin(P-4-x/2) = 2cos(P-3-x/2)-sin(x/2), etc. 

terminating with 

sin(2x/2) - sin(O)  =  2cos(x/2)sin(x/2) [P even] 

sin(3x/2) - sin(x/2) =  2cos(2x/2)sin(x/2) [P odd]. 

Summing, 

^"""^^^^^^ = 2[cos('Fl)-x/2) + cos(P^-x/2) + ...]        (Eq. B.2) 
sin x/2 

the summation ending with cos(x/2)  [P even] 

1/2  [P odd]. 
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sin^('Px/2) On squaring,  ^^    will contain terms of the form 
sin2(x/2) 

cos(rx/2)cos(tx/2) = %[cos(r+t)-x/2) + cos(r-t)-x/2]. 

But r and t are either both odd or both even, so that ^(r+t) and H(r-t) are 
both integers. It follows that 

s1n2(Px/2)   ''v"'" ft   /  ^ , (u      D ON  ^"-^—-   = I A cos(rx)                  '       (Eq. B.3) 
sin2(x/2)   r=0 ^ 

[since, on squaring Eq. B.2, the highest order term will be cos(P-l)x]. 

To evaluate the coefficients A in Eq. B.3, note that 

sin^(Px/2) _ 1-cosPx 

sin2(x/2)   1-cosx 

so that 
P-1 

1-cosPx = (1-cosx) I  A -cosCrx) 
r=0  '^ 

P-1 P-1                
I A -cosCrx) - A 'cosx - % I A [cos(r+lx) + cos(r-lx)], 
r=0 ^ ° r=l " 

Equating coefficients of cos(rx). 

AQ - %Ai = 1, 

Ai - %A2 - A^ = 0, 

A^ - %A^.i - h\^-^  = 0   2 < r < P-2, 

Ap_i - ^Ap_2 =  0. 

%Ap_-^ = 1. 

It is easy to show that the solution of these equations is 

A^ = P. 

A^ = 2(P-r) 1 < r < P-1. 
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Similarly 

,   iiniCMi) J"/ B .cos(ty). 

sin2(y/2)   t=0 

where 

B^ = 2(Q-t)  1 < t < Q-1 . 

Therefore 
P-1 Q-1 

p2Q2[f(P).f(Q)]    z I A B cos(rx)-cos(ty) 
r=0 t=0 ^ ^ 

= hll   A B. [cos(rx+ty) + cos(rx-ty)] 
r t 

Now consider the integral of cos(rx+ty) with respect to ^. 

rx+ty = ks[r-sinP'Cos(t) + t(sinp'CosY'Sin(t) - sinycosp + sine] 

= ks[sinp Vr2+t2cos^«sin((j)+e) - tCsin^-cosp - sine)], 

where 
tane = r/Ct-cosy). 

Therefore 

cos (rx+ty) = cos(ks'sinp ^r2+t^cos^Y*sin(t)+e)'COs[kst(sinycosp - sine] 

+ sin(ks'sinp V'^^+t2cos^*sin(t)+e)-sin[kst(sinY'Cosp - sin6]. 

But, in integrating over 2n, since the integrand is periodic with period 
2n, the phase term e does not appear in the result, and may be therefore 
set equal to zero. 

Further, in forming cosCrx-ty), it is necessary only to change the sign of 
t, which will leave the cosine term unaltered, but will change the sign of 
the sine term. The latter therefore vanishes identically on adding, and 

27t 27t 
p2Q2 j [f(P)-f(Q)]2d(t) = 1 1 S    A B^-cos[kst(sinY-cosp-sine] 

o r t 0 
cos(A*sinp*sin(t)) dcj) 
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where A = ks -^r^+t^cos^y 

= 2n 1 1  A B.•cos[kst(s1nY-cosB - sinelj (A-sin6) 

= 2n 1 1 A B J  (A-sinp)[cos(kst-sine)cos(kst-sinY-cosp) 
r t        ^ . 

+ sin(kst'sin6)sin(kst-sinycosp)], 

and therefore 

p2Q2      p-i Q-l n/2 
[ 

2n     2 
I - I  I  J A B. [cosp-cos(qcosp)+sinp-sin(q-cosp)]J (A.-sin6) 

=0 t=0 0  ^ ^ 0 
X cos *" p-sinp-exp(-Az-secp) dp , 

where 
p = kst'sine 

q = kst'siny 

X = ks 7 r^+t^cos^y . 

Now the integral involving cos(q-cosp) is of the same form as that for 
evaluating the integral Ii discussed in Appendix A, and we may write 
immediately the first term as (see Eq. A.4 of App. A). 

I  I  I  I A B.-cosp V3.<. - iMfi_ . j (;,) E   .    CAz") 
i=0 n=0 r=0 t=0 '^ ^     ^^i)!    n!     ^n^-^^ '^2m+2i+2n+l^'^^-'- 

Moreover, in forming the second integral, it is sufficient to note that 
since 

cos(q.cosp)= Z ^-q!^°^'P>'' 
i=0 

and 

sin(q.cosp) = 1    (-i)^' ia^|?l|)!!!^ 

o V (-q^cos^B)^ 
- q.cosp 1^      \2in)!  ' 

this term derives immediately from the first by writing 2m+l for 2m and 
writing (2i+l) for (2i). 
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Thus finally, 

.   2i+l sinp*q 

^  (2i+i)!  ^2m+2n+2i+2^'^^^ ' 
(Eq. B.4) 

where 

A = P B = Q 
0 0  ^ 

A^ = 2(P-r) [r>0]      B^ = 2(Q-t) [t>0] 

K   =ks V r^+t^cos^v 

p = kst-sinS 

q = kst'siny 

This formidable quadruple integral is the formal solution of the double 
integral. The general form (Eq. B.4) has been derived for the sake of 
completeness although it does not appear to be inviting for numerical 
computation. It is not, however, impossible. Comparing with the 
equivalent form for I^ (Eq. A.4 of App. A), it is evident that, for given n 
and i, Eq. A.4 requires only one Bessel function and one exponential 
integral to be computed. In the present integral it is immediately evident 
that  PQ Bessel functions will need to be evaluated,  two exponential 

integrals, and 2PQ coefficients of the form A B. q ^ or A B q ^ ^. For 
PQ large this would be a formidable undertaking. ^ ^ 

However, it is probably much more important to look at the special cases of 
Y = 0 and y = 7t/2. 

Making y = 0 does yield notable simplification. Since q = 0, the only 
surviving term in the summation over i is the first term in Eq. B.4 for 
i = 0, so that 

I2 (Y=0) =-£!L.   Ill    A B -cosp •  -f—  ♦ J (Ai)E^ .„ .,(Az), 
p2Q2 n=o r=0 t=0 ^ ^        n!     n   2m+2n+l 

(Eq. B.5) 
where 

A-i = ks 1/ r^+t^   p = kst-sine . 

Comparing with the equivalent form for Ij (Eq. A.5 of App. A), Eq. B.5 
consists of a weighted sum of PQ simpler forms, so that a computer 
programme designed for I^ could be used as a subroutine for l^.     This would 
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computation 
in r and t, 
is the lesser 

of the Bessel Functions since, 
many may turn up twice.  It is 

and Q, the number of of P 

be slightly wasteful in the 
because of the symmetry of k^ 
easy to show in fact, if R 
different Bessel functions to 
example, this becomes %P(P+1), a saving of nearly 50% for P large. 
However, the complication in programming for these replicas may offset such 
a saving. 

be calculated is PQ-^(R-l).  For P = Q, for 

Making y = n/2 does not simplify quite so neatly.  We now retain the 
quadruple summation, so that I2(Y = n/2)  has the form of Eq. B.4, in which 

Y2= ksr q = kst. 

However, Xg does not involve t, so there are now only P terms of the form 
(As>/2) 

n! 
J^(^2) t.0 be computed. 
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